Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathbf{C}-\mathbf{H} \cdots \mathbf{N}$ and $\mathbf{C}-\mathbf{H} \cdots \pi$ interactions in 2-ethoxy-4,6-diphenylpyridine-3-carbonitrile

Urmila H. Patel, ${ }^{\text {a* }}$ Chaitanya G. Dave, ${ }^{\text {b }}$ Mukesh M. Jotani ${ }^{\mathrm{C}}+$ and Hetal C. Shah ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Sardar Patel University, Vallabh Vidya Nagar, Gujarat 388 120, India, ${ }^{\text {b }}$ Organic Synthesis Laboratory, M. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and ${ }^{\text {c B. V. B.'s R. A. College }}$ of Science, Ahmedabad, Gujarat 380 001, India
Correspondence e-mail: u_h_patel@yahoo.com

Received 29 July 2002
Accepted 7 October 2002
Online 8 November 2002

The title compound, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$, has two molecules in the asymmetric unit and the crystal structure shows that the central pyridine ring of each molecule has a flat boat conformation. The terminal C atom in one of the molecules is disordered over two positions, with relative occupancies of 0.594 (14) and 0.398 (14). Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions and $\pi-\pi$ stacking, along with intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, help to stabilize the structure.

Comment

The title compound, (I), belongs to the 2-pyridine class of compounds, which show a wide spectrum of biological activities (Perez-Medina et al., 1947). The present work continues our structural studies of the 2-pyridine group of compounds (Patel et al., 2002a,b).

(I)

Compound (I) crystallizes in the monoclinic space group $P 2_{1} / c$ with two molecules in the asymmetric unit, denoted A and B. A perspective view of the two molecules is shown in Fig. 1 (Johnson, 1965). The pyridine rings of molecules A and

[^0]B have quite similar geometries. The shortening of the $\mathrm{C}-\mathrm{N}$ distances $[1.313$ (3) and 1.346 (3) \AA in molecule A, and 1.349 (3) and 1.299 (3) \AA in molecule $B]$ and the opening of the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ angle $\left[123.9(2)^{\circ}\right.$ in molecule A and $124.6(3)^{\circ}$ in molecule B] may be attributed to the size of the substituent at C 1 , correlating well with the values observed in the ortho-substituted derivative 2-(2,3-isopropylidenedioxy-propyloxy)-3-cyano-4,6-diphenylpyridine (Patel et al., 2002c). However, when the ortho substituent is only an O atom, the bond length and angle are normal (Patel et al., 2002a,b). The bond distances and angles of the phenyl rings of molecules A and B in (I) are consistent with those observed in other similar structures (Patel et al., 2002b; Black et al., 1992; Hussain et al., 1996).

The flat boat conformation of the dihydropyridine ring of molecules A and B is reported in the literature for other compounds incorporating this moiety (Lokaj et al., 1991; Fonseca et al., 1986). The cyano atoms C18 and N2 of molecule A deviate by 0.173 (4) and 0.310 (5) \AA, respectively, from the pyridine ring plane, while atoms $\mathrm{C} 18^{\prime}[-0.031(4) \AA]$ and N^{\prime} $[-0.058(6) \AA]$ are coplanar with the pyridine plane in molecule B. The phenyl rings of both molecules are planar. Steric hindrances rotate the phenyl rings out of the plane of the central pyridine ring by 35.49 (8) and 24.61 (1) ${ }^{\circ}$ (molecule A), and by 41.0 (1) and $22.3(1)^{\circ}$ (molecule B). A similar orientation of the phenyl rings has been observed in other derivatives of 1,4-dihydropyridine reported by our group and by others (Patel et al., 2002a; Bolte, 1998).

The significant difference in the conformations of molecules A and B is in the relative orientations of the ethoxy moiety. The ethoxy group in molecule B is orthogonal to the pyridine ring plane $\left[\mathrm{C1}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C} 19^{\prime}-\mathrm{C} 20^{\prime}=94.1(6)^{\circ}\right]$, thereby avoiding steric interaction, while in molecule A it is coplanar with the heterocyclic ring plane $[\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 19-\mathrm{C} 20=$ $\left.170.1(2)^{\circ}\right]$.

The terminal ethoxy C atom of molecule B is disordered over two positions, resulting in a shortening of the $\mathrm{C} 19^{\prime}-\mathrm{C} 20^{\prime}$ $\left[1.350(6) \AA\right.$] and $\mathrm{C} 19^{\prime}-\mathrm{C} 20 A$ [1.392 (9) A] distances. The torsion angles defining the orientations of various substituents at the central pyridine ring are summarized as follows for molecule A, with the values for molecule B given in brackets: $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 18-\mathrm{N} 2=146(6)^{\circ}\left[35(43)^{\circ}\right], \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 18-\mathrm{N} 2=$ $-33(6)^{\circ} \quad[-149(43)], \quad \mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 19=-172.0(2)^{\circ}$ $\left[179.1(3)^{\circ}\right]$ and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 19=8.1(3)^{\circ}\left[-0.6(4)^{\circ}\right]$

An intermolecular network of $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$-stacking interactions plays a significant role in the stability of the structure of (I). In addition, there is an intramolecular C$\mathrm{H} \cdots \mathrm{N}$ interaction (Fig. 2) involving pyridine atom $\mathrm{N} 1^{\prime}$ and ethoxy atom $\mathrm{C} 19^{\prime}\left[\mathrm{C} 19^{\prime} \cdots \mathrm{N} 1^{\prime}=2.709(5) \AA, \mathrm{H} 19 D \cdots \mathrm{~N} 1^{\prime}=\right.$ $2.34 \AA$ and $\mathrm{C}_{1} 9^{\prime}-\mathrm{H} 19 D \cdots \mathrm{~N} 1^{\prime}=102^{\circ}$]. Cyano atom N 2 of molecule A interacts with phenyl atom $\mathrm{C}^{\prime} 5^{\prime}$ of a symmetryrelated molecule B at $\left(x, \frac{3}{2}-y, z-\frac{1}{2}\right)\left[C 15^{\prime} \cdots \mathrm{N} 2=\right.$ 3.399 (6) $\AA, \mathrm{H} 15^{\prime} \cdots \mathrm{N} 2=2.55^{2} \AA$ and $\left.\mathrm{C} 15^{\prime}-\mathrm{H} 15^{\prime} \cdots \mathrm{N} 2=153^{\circ}\right]$. The hydrogen bonding in the structure of (I) is supported by $\pi-\pi$ stacking between the pyridine ring plane of molecule A and that of molecule B at $(1+x, y, z)$, with their centroids separated by 3.926 (2) \AA.

Figure 1
A view of the two independent molecules in (I), showing the atomnumbering scheme; molecule B is labelled with primes. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

There are two intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the structure of (I). In the first, phenyl atom $\mathrm{C13}^{\prime}$ of molecule B interacts with the pyridine ring of molecule $A\left[\mathrm{C13}^{\prime} \cdots C g 1=\right.$ $3.392(3) \AA, \mathrm{H} 13^{\prime} \cdots C g 1=3.18 \AA$ and $\mathrm{C13}^{\prime}-\mathrm{H} 13^{\prime} \cdots C g 1=$ $95^{\circ} ; C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1$ ring]. In the second interaction, ethoxy atom C 19 of molecule A interacts with the pyridine ring of molecule $B[\mathrm{C} 19 \cdots C g 2=3.868$ (3) \AA, $\mathrm{H} 19 B \cdots C g 2=3.37 \AA$ and $\mathrm{C} 19-\mathrm{H} 19 B \cdots C g 2=114^{\circ} ; C g 2$ is the centroid of the $\mathrm{C} 1^{\prime}-\mathrm{C} 5^{\prime} / \mathrm{N} 1^{\prime}$ ring].

There are also two intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Desiraju \& Steiner, 1999) linking symmetry-related molecules A and B, and these are dominant in the structure of (I), providing strong packing. In the first of these interactions, phenyl atom C10 of molecule A interacts with the symmetryrelated phenyl ring of molecule B at $\left(1+x, \frac{3}{2}-y, \frac{1}{2}+z\right)$ $[\mathrm{C} 10 \cdots \mathrm{Cg} 3=3.498$ (4) $\AA, \mathrm{H} 10 \cdots C g 3=2.71 \AA$ and $\mathrm{C} 10-$
$\mathrm{H} 10 \cdots C g 3=143^{\circ} ; C g 3$ is the centroid of the $\mathrm{C1}^{\prime}-\mathrm{C}^{\prime} / \mathrm{N} 1^{\prime}$ ring at $\left.\left(1+x, \frac{3}{2}-y, \frac{1}{2}+z\right)\right]$. In the second interaction, orthosubstituted phenyl atom $\mathrm{C} 17^{\prime}$ of molecule B interacts with the symmetry-related phenyl ring of molecule A at $(x-1, y, z)$ $\left[\mathrm{C} 17^{\prime} \cdots \mathrm{Cg} 4=3.653(4) \AA, \mathrm{H} 17^{\prime} \cdots \mathrm{Cg} 4=2.95 \AA\right.$ and $\mathrm{C}^{\prime} 7^{\prime}-$ $\mathrm{H} 17^{\prime} \cdots \mathrm{Cg} 4=134^{\circ} ; C g 4$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{N} 1$ ring at $(x-1, y, z)]$.

Experimental

The title compound was synthesized according to the method of Shah (2000); full details of the synthesis will be published elsewhere. Thin plate-like crystals of (I) were grown by slow evaporation from a solution in a mixture of chloroform and ethanol (1:1).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=300.31$
Monoclinic, $P 2_{1} / c$
$a=8.5542$ (10) A
$b=32.027$ (3) \AA
$c=12.3910$ (7) \AA
$\beta=104.493$ (3) ${ }^{\circ}$
$V=3286.6(5) \AA^{3}$
$Z=8$
$D_{x}=1.214 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.204 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in an aqueous potassium iodide solution
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=25-35^{\circ}$
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.2 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=67.9^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 30$
$l=0 \rightarrow 14$
2 standard reflections frequency: 60 min intensity decay: 1%

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0770 P)^{2}\right.$
$+0.3042 P$]
$(\Delta / \sigma)_{\max }=0.050$
$\Delta \rho_{\text {max }}=0.13 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \mathrm{A}^{-3}$

5612 independent reflection
3150 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.160$
$S=1.02$
5612 reflections
426 parameters
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical
via ψ scan (North et al., 1968)
$T_{\text {min }}=0.930, T_{\text {max }}=0.940$
6001 measured reflections

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	1.336 (3)	$\mathrm{Ol}^{\prime}-\mathrm{C} 19^{\prime}$	1.431 (4)
O1-C19	1.463 (3)	$\mathrm{N} 1^{\prime}-\mathrm{Cl}^{\prime}$	1.299 (3)
N1-C1	1.313 (3)	$\mathrm{N} 2^{\prime}-\mathrm{C} 18^{\prime}$	1.133 (4)
N2-C18	1.142 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C} 18^{\prime}$	1.444 (4)
C2-C18	1.437 (3)	C19'- ${ }^{\text {c } 20}{ }^{\prime}$	1.337 (6)
C19-C20	1.477 (4)	$\mathrm{C} 19^{\prime}-\mathrm{C} 20 \mathrm{~A}$	1.394 (8)
$\mathrm{O} 1^{\prime}-\mathrm{C} 1^{\prime}$	1.350 (3)		
C1-O1-C19	117.81 (19)	$\mathrm{C1}^{\prime}-\mathrm{Ol}^{\prime}-\mathrm{C} 9^{\prime}$	119.0 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	118.1 (2)	$\mathrm{C} 1^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 5^{\prime}$	117.6 (2)
N1-C1-C2	123.9 (2)	$\mathrm{N} 1^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	124.6 (3)
N2-C18-C2	177.2 (3)	$\mathrm{N} 2^{\prime}-\mathrm{C} 18^{\prime}-\mathrm{C} 2^{\prime}$	179.5 (3)
O1-C19-C20	107.6 (2)	$\mathrm{C} 20^{\prime}-\mathrm{C} 19^{\prime}-\mathrm{O}^{\prime}$	110.3 (4)
N1-C5-C12-C17	154.8 (2)	$\mathrm{N} 1^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 12^{\prime}-\mathrm{C17}^{\prime}$	156.8 (3)
C4-C3-C6-C11	-142.1 (2)	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C}^{\prime}-\mathrm{Cl1}^{\prime}$	-41.7 (4)

Figure 2
The molecular packing in (I), viewed along the $b c$ plane, showing the hydrogen-bonding interactions.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C}^{\prime} 9^{\prime}-\mathrm{H} 19 D \cdots \mathrm{~N} 1^{\prime}$	0.97	2.34	$2.709(5)$	102
$\mathrm{C}^{\prime} 5^{\prime}-\mathrm{H} 15^{\prime} \cdots \mathrm{N} 2^{\mathrm{i}}$	0.93	2.55	$3.399(4)$	153

Symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$.
H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.93-0.97 Å.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965) and PLATON (Spek, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to Dr Babu Varghese of the RSIC, Indian Institute of Technology, Madras, India, for the X-ray data collection, and the Department of Physics, Sardar Patel University, for financial support of this work. JMM is grateful to the UGC for a teacher fellowship award.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1195). Services for accessing these data are described at the back of the journal.

References

Black, S. N., Davey, R. J., Slawin, A. M. Z. \& Williams, D. J. (1992). Acta Cryst. C48, 323-325.
Bolte, M. (1998). Acta Cryst. C54, 132-134.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Fonseca, I., Martínez-Carrera, S. \& García-Blanco, S. (1986). Acta Cryst. C42, 1792-1794.
Hussain, Z., Fleming, F. F., Norman, R. E. \& Chang, S.-C. (1996). Acta Cryst. C52, 1010-1012.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lokaj, J., Vrábel, V., Sivý, P., Kettmann, V., Ilavský, D. \& Ječný, J. (1991). Acta Cryst. C47, 886-888.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Patel, U. H., Dave, C. G., Jotani, M. M. \& Shah, H. C. (2002a). Acta Cryst. C58, o191-o192.
Patel, U. H., Dave, C. G., Jotani, M. M. \& Shah, H. C. (2002b). Z. Kristallogr. New Cryst. Struct. 217, 29-31.
Patel, U. H., Dave, C. G., Jotani, M. M. \& Shah, H. C. (2002c). Z. Kristallogr. New Cryst. Struct. 217, 32-34.
Perez-Medina, L. A., Merriella, R. P. \& McElvain, S. M. (1947). J. Am. Chem. Soc. 69, 2574-2579.
Shah, H. C. (2000). PhD Thesis, Gujarat University, India.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON. University of Utrecht, The Netherlands.

[^0]: \dagger Current address: Department of Physics, Sardar Patel University, Vallabh Vidya Nagar, Gujarat 388 120, India.

